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FEE: st Z A e Bk, i fedbiidfe, RMMBTASERTLE. BATLART R AL L
SAER TR, ALEE T XL TR TN EMF SR ELRA, AANET Lot bt R F S RERA
ARG RBE, BT ST R F RN A AL X R, 7T A RSN R AR Fovt S 0 £ Y S ReAR LIRS

F, AT A et GRE 498 R RATAL.
A vt K e AL M AR

43 2% (chlorophylls)| 72 /3 A T 4R (AW .
FKADLEHE T, 2 HRATRELENRARGBER.
18174F v 4L 525K, B. CaventoufIP. J. Pelletier iy
ooy It a4 1 gk ER 19064F 48 [E AL 2 K R.
WillstatterilE B g 3 i & A 81 1, IFHIEM] 4
TV 2R 2 2 R 2R R IR A (M R a il
£k Eb), R. Willstétter[K 3R 519154517 ULk 10
FA B JE, T E A 5CH. Fischer W T it 4¢3Ra
(AL 5 G A, E SIS 3 R IIL 2L 3R B S5 R AH AL, A%
O 5 10 350 72 FH N WAL B, A DR 3R A5 19304
W TR 32; 19604, 56 E4L % %KX R. B. Wood-
ward KK [ M4 Rasr TN L& OITE, A
TEM 2% 2 55 E A N G W6 17 TH A H DTk
M IRTF 196541 DURA 224 . 3X =T DR S
BT R R AR P EE M, G, X
TEEHARFFRES R T 1008 i 28 28 S AT AR
¥)(Scheer 2006) .

XL 28 38 R HATAEY) F, BT CE sk B %
Z 5 GERPIRAR SRR ILG 10, EA1H%
HE R B0 PP A IR P 9 S B i 44 o AR X e
SRRACE IR AT, X NIBEEOCE A
R I 2R 25 (Chls) AU JBUCEDE & A2 0 I 248 T
£% 2% (bacteriochlorophylls, BChls) % K5 (Chew Al
Bryant 2007; Harada%$2014). ChlsH §i & & IL7FH,
SHINChIs av by ¢ cyv 3 ds f, FEARE R
SR BESFEAE R ED) S, H P Chl 2K
PP AT R 2K 201048 AR K AE MR R 2 7
J2 B A — R B (cyanobacterium) F R B

(Chen%$2010)., 19484F, H. Strain ¥ 7E H K K F 1
SCHR A ARIE T —FHTIChL e, 76 1 2050~704E4K
[ — 2% 2 bt R FIChl e A3, Chl eff 454
DRI S B ARAF BNESE M AN . 9 T [X43Chl e,
JZBA TR 2R B 44 9Chl fo BChisT:
B SO 41 1R (green sulfur bacteria). 25 (.41
B (purple bacteria). W& PR 41 (acidobacteria) Fl H
J6HF B (heliobacteria) & AN A OGS 40T, H Al
SRBTHF, 433 ABChls a. b, ¢\ dv e. fv g
(Harada%:2014), HFBChl AY WS E S 4 BChI e
1 —Fh &t B 4l & (Chlorobaculum limnaeum)fJ N T.
RARP G K, BRI AAEAE(VoglF52012).
RS R WSS AR AL, A& O R R %
VIKRFR . ARCEE 72 506FH B4 5 Kk
JSC DR ) G5 A RE ORI AR WD 6 OB AR, NS 3 A G
Rt S %

1 MR ERFIEHSANGEHBRMERMS

AEMH SRR A E R, e
TEA TARBIRBOLHE, 666458t 0] H
AFEBAR AT EER, 7 7 eE W
& %% i) (Croce flvan Amerongen 2014). ‘EATH)
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%0 25 AR, B H I A< Sk 38 A i Ak e 2
TR RR, e b R R R B PR [ PR e S 8 A
A - E PR A 4k 22 B A 23 (ITUPAC-1UB) ik
1788 5 Mg 4 (Moss 1988). HMIFKIAZ H44>
MERRIAL 1L I, IVIR) A4/ B AR B (=CH-) i i
B — KR, FONER — A8 AR AR 1 R
(FZHV). PR S EUL, 2RSSR
o B — U RR 3 (chlorin), I8 EHFRZ g RhmpkA Sk
o IRRER A R — AN T, IR AT, 52
AFEE () U5 15 B H AT, OIS IR A Sk 3 2 S K
(1. BRChls e A “BaLEE 74, HoAh 28 2= # 0
T — N EE A1 R S A SR A ) SR IR
BE(R'), DABRHE S STV FR 00 EE_F 74 R 45
Ho BPS RIS E T R B EE R IR K
RIEAN, % BT NI IR S 350 i 74N 00 % (R
R’. R’. R, R"”, R"?*, R*) |k, HET &I A
e SR IR MU BE L HI ), &2 FF 3 (—CH,).
Ak, fEC7-C8. C17-C18. C17'-C17°fr &, A1
MR R XU, AR (D . BT A M
EER VARSI a3

2 HEENEMER
M2 A& B — AR R fE,

EQEE: A

KINLEESS2T RN
Fig.1 The general structure of chlorophyll
RFRA R I EE, L3R b AL 7T e S B XU, I~V SR
AR EEER IS SRR LA NIRRT -

HrA SR G RSN ETEEeMAR. H
BRI A RBOGE SRR # A2 M3,8-Z 4
- R4 KW lisa (3,8-divinyl-protochlorophyllide
a, DV-PChlide a)& & f1)(ChewA1Bryant 2007; Harada
£52014), DV-PChlide aF i i AN [A] 1 AR i A2 40
N4 2. [Hitk, DV-PChlide a2 M4 R &

ENIEST AR

Table 1 The structural differences of various photosynthetic chlorophylls

23 3 R R’ R’ R’ R c7-Cc8 R" R"®?  C17-C18 C17'-C17° R R
Chla CH, CH=CH, CH, C,H; = CH, COOCH, - - H Fi
Chl b CH, CH=CH, CHO C,H; = CH, COOCH, - - H Fi
Chl ¢, CH, CH=CH, CH, C,H; = CH, COOCH, = = H H
Chl ¢, CH, CH=CH, CH, CH=CH, = CH, COOCH, = = H H
Chl ¢, CH, CH=CH, COOCH, CH=CH, = CH, COOCH, = = H H
Chld CH, CHO CH, C,H; = CH, COOCH, - - H Jicl
Chlf CHO CH=CH, CH, C,H; = CH, COOCH, - - H F
BChl a CH, COCH, CH, C,H; - CH, COOCH, - - H Jicl
BChl b CH,  COCH, CH, =CH-CH, - CH, COOCH, - - H F
BChl ¢ CH, CHOH-CH, CH, EA = ZM H - - CH; e
BChl d CH, CHOH-CH, CH, EZ i = ZM  H - - H e
BChl e CH, CHOH-CH, CHO e = ZM H - - CH; W
BChl f CH, CHOH-CH, CHO e = ZH  H - - H IR
BChl g CH, CH=CH, CH, =CH-CH, - CH, COOCH, - - H e B

“FOR L, “="FORWEE; BChls ¢v d. ev fMARMUEETT LU 25
e A, HELeBChIIEAT H At S8 2 (1 IR AL I -

T ST HEEGH I, RPMGBETT LUR R 20, BRIERE . 1%
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B ELARHT A5 H 19484ES. Granick 1 J6 g
M4k 3R G OB AR LR, 23R I AE Y& AN i L
RHTE R, S AN SR SO0 R A R A7 18 T
1% 1 B (Harada%5:2014; Thweatt%5:2017), HZLH
oG BOB R ANE 2

2.1 MEZEEVERBENETMNDX

AR SR B ) R T 8- 2 A LR R
(8-aminolevulinic acid, ALA, R A 5-%8 J: i 1k,
1), ALAMEBUSEA MR (1) CA+CLELE: H
ALAS HUEE(ALA synthetase) i 44 3% 51 & 4t iy A A1
H& R [ B, 42 BLALA (Porra 1997); (2) C5i%4%: LA
B AR (ol 2 = 1R) N R RL, 7E2 I -tRNA &
% (glutamyl-tRNA synthetase) [{IEL K, BA &R
R ENRNAG T E, TERL-B IEHE-RNA, -4 5
T -tRNA T 4 25 22 ik -tRN AL J5 i (glutamyl-tRN A
reductase)ifs J5AL- Z FR G- 1-2- % (L-glutamic acid
1-semialdehyde) BB B IRNA, L-A 2 -1
it it Jo 7E 8- 28 Bk IR A TR G B[ BORR A3 2 R - 1 -+ 1
R ILFEFL I (glutamate-1-semialdehyde aminotrans-
ferase)]f{/E ]l T 42 RALA (Beale 2005, 2006).

b6 5, 877 T ALAHH6FP B Ak & Bt 2k 2 (1)
A AR Y)—— NN RIX (protoporphyrin IX, Proto-
IX). 7 SerEH 5 i & R (porphobilinogen syn-
thase)(J/E R, 4>+ ALAZA G i B A g A1)
JIH 8,2 J5i (porphobilinogen, PBG). 443 FPBGYEH
% 5 il Z ¥ (porphobilinogen deaminase)fift,
I 4 S A B R AR, AR o R E A e
(hydroxymethylbilane); ¥% F 3 JH €8 G2 7E R 1 I i
14 % (uroporphyrinogen 111 synthase)f*J4F H T,
AN IR IR PR A2 PR MBI ST (uroporphyrinogen
I11), 2 b nb bR 1R R BOHE B2 55 1wl 2 B2 A TP
Jfeo BRNNWRR R ITIAE SR 1B IR R TIT 22 i (uroporphy-
rinogen 11 decarboxylase)fF H] T /it 2244423, 2E
& FERMIBJEITT (coproporphyrinogen 111). [ifi f5 F&0k
Wb JER TXLAE 3t 1 Wb 57 444 i 2 I (coproporphyrinogen
oxidative decarboxylase)fE R T A= il 5 IR bk Ji 1X
(protoporphyrinogen 1X), Ji& 3 i7E— 5 7F JiL AN bR J5E 42
1k, (protoporphyrinogen oxidase)ffJ/E H F, AL
SRR RIX . SRS RIX A A S ER . AN
Mo g MR REATEY G BET . ke

IR K v 1] 7= P 1) 6 1 AR AR 22 0M S Ah S
ik s PELR A 4 (Porra 1997; Beale 2005), {H A
b Lk A a] ) i 4 AN

HT SR AN BRIX 5 B SR IR 28 — P O R 5
Mg> #4, HiMg-#4 B (Mg-chelatase, HiBchH.
BchD. BchIg{ChiH, ChID. ChIT= iV J& ¥ i) i
o, FMg™ Hi N JE A RIX e, T M g- J5 R R IX
(Walkerf1Willows 1997; Bollivar 2006; Tamiaki%
2016), % N7 B E AN G PN ATP I 25
1%, HEAN— Mg T B AL 154 ATP (Reid A
Hunter 2004), Mg- & INIKIX7EMg-JF M IRIX 3
HFL (M g-Proto-IX methyltransferase, ChIME,
BehM) AL TR, 5 C13 47 1 1) 74 R 2L [ H ik 14,
AE M g- Ji7 IR IBRTX B2 FE S (M g-Proto-1X-monometh-
ylester); 7R J5 i i Mg-J57 1 RIX ER. H R A AL g (M g-
proto-IX monomethylester cyclase, BchEE{ChlA)H]
YEH, #C13 LR I BRBE A AL IR, T S T T
IN(VER), AR T BT A M4 3 1 L 3 & AT A
%—%ﬂ?ﬂﬂ%a(XM%ﬁ§%A$%@%

A IS, DIEFE 8 A Fe, MO8 & A 858
%Eﬁﬂ{{iﬁf’%é}ﬁ(the aerobic cyclization system
Fe-containing subunit, AcsF) (PintaZ£2002); BchEN|
X A BURHINGE, 15T IR EOG G 4l kP ) M
AL s AT LU A B A B R SR 58 TP AR T ) R
41 8 [6] i AT ChIAFIBchE (Oh%52000), M4t
B BRI E TR S B E2 TR .

M-k 2 A R R — BB A4 (K
2)e —ANGr 3 i St R TR IR A ALk R g
(protochlorophyllide oxidoreductases, PORs)¥;DV-
PChlide aZ5TVHLR IR [1IC17=C18 XU E L J5 Fi 522,
A 8- £ M - JE I 2% K R iR a (8-vinyl-chlorophyl-
lide a, 8V-Chlide @), FiEit — 4% 354 J7 i (divinyl
reductases, DVRs)#8V-Chlide a I [{]C8 2 J#& it
JR A% 2.3, A2 it SR Z iR BiBa (chlorophyllide a, Ch-
lide @) (Tsukatani%$2013a). HAj, DVRESKIL T
3FfA L BeiA, BeiB A4 2 R Tk o S8 A0 i Ji il
(chlorophyllide a oxidoreductase, COR) (Harada%
2014). 53— A3 R DVRs/pDV- PChlide
a bINC8 2 I8 JF Bl . 8, A2 iR M 2% R R R a
(protochlorophyllide a, PChlide a), PChlide atiFRr A
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Fig.2 The trunk and branches of biosynthetic pathway of chlorophylls

JE 4k & (SaundersZ£2013) . SR G RIS RH A
PORf#ELL, #C17=C18 XL Jii, A= piChlide a
(WangZ$2010), AFFLR I, 4B 28R A K DVRs
(I IS4 & 8 V-Chlide a, {75 *48V-Chlide afH 2
i, A4 B EhE ANy 324 i Chlide @ (Canniffes
2014),

POR & I 4¢3 & il (1) SC B AN B g . 7
HeE VTR T PR S5 R AAH K FIPORSs: SR
P iR - 2% 25 TR T AU AL I8 JiR i (light-dependent proto-
chlorophyllide oxidoreductase, LPOR)F1E ) {4k i
P JE G K R I8 S L 14 J5 B (dark-operative proto-

chlorophyllide oxidoreductase, DPOR) (Suzukif/l
Bauer 1995), LPORZ H A — AN Z% 3k K 4 £ (1)
B R, R EROLREA BRREAT AL SO,
s A7 AE T W 40 B A A B0 A AR T (Heyes 55
2006), DPORNM & f 34N A0 B (1 8 A i 2 &
P (RS RE ) T N ChIL, ChIBAIChIN, St & 4 i
NBchL. BchBAIBchN), i 777 T JH b &2k
YR Bk Bl TR A ) — S8 B G & A (Chen
2014). DPOREA T 1 AR M1 ATPARIE — IV B2
#h(BE JF R UE 22 ) (Nomata$2006), Hox i
B FE UK, 0 9 UK R 1 3% I DPOR 2k
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i% (Yamazaki%$2006). #% 71 477% f DPOR %15
LA, R A ¥ 7 #E4 FF PChlide 7] Chlide % 1k /&
WHE IR, QiR e B A K, XY & 3
tbo £ DPORMIEA AE W MILE BB o B BE A Rk
RS &

2.2 ChistiEHIE IR

2.2.1 Chla, Chlb, ChldFIChl fEIENE K

2% 25 45 55 A B (chlorophyll specific syn-
thase, ChlG)#E{L.Chlide alfjC17-P9H8 5t - FE
F2 (phytyl-pyrophosphate)figft, 5k I Chl affi &
. — N IChI b B % HH Chl ol 281 K[, Chl
alll%& i (chlorophyll @ oxygenase, CAO)¥4Chl a_ I
CT7Hhb 1y 58 Ak B R e 2%, st A% 1 Chl b R4
kK ILCAOW AT ¥4 Chlide a b (K C7H 48 Ak i
Wi, 464 A Chlide b (Tsuchiya%$2012; Lif1Brid-
well-Rabb 2019); ChIGfJ{#{.Chlide b5 fi - £
R lE AL, A2 Chl b (J413).

A SIS IE I Chl a7&Chl difAEW 4 i, HE
MICh drEC3 Rk 1) H 5 52 A2 e 48 A I 2 I R T
(13(Schliep52010; Chen 2014), {5 H i i A & Bk
Chl a%% 4t yChl difJFH R, BARE o FE ik A TE
# . Chl /] & {E2&2-FEE3E-Chl a (WillowsZ52013),
HA A ARG ARPE R, BBChI £A R (ChIF) 2
4L Chl a (HChlide a)4= B Chl f (5 Chlide f)5
AL 5 i (Ho%52016; LiAIBridwell-Rabb 2019).,
Chl £ F ¥ C2- FI I A 1 48U 7oK B 4 M A2
K53 (Garg&52017). [EFf, Chlide fix )5 F 51
Fe-HE R IR AL A BChLfF (B3).

2.2.2 Chls cHIEIE R

Chls 25 4% mUR A “BRLEE R, HE5H
5DV-PChlide a#1PChlide a25{l. Kk, HIE 5 M
F A NChls ¢, ‘BATTHTEE /2 Chl ¢, FIChL o,
W)L BT A4 (Helfrich282003) . ZapataZ(2006) 4
il 7 DV-PChlide af1PChlide a 5 Chl ¢, #1Chl ¢, [f]
IR B A R B e Chl o, BRI FR Jg7- H 48 Bk
%:-Chl ¢,”, Porra (1997)iA NChl ¢, 7] g2 HChl ¢,
AR, Chl ¢, CT7-H A Fik i (—COOCH,) [ & B,
Al REAEChI ¢, CT7-F LS S Ak Ji F 8t % (—-CHO),
SRJE P B A3k . Chls /B9 & o 7 B3
DAEATI AR A BHHUEYE -

2.3 BChIsfIEH1E6 RiR:E

BChIsI A& A AN S, B 7 BChl b4l
BChl gt R 44 J&8V-Chlide a#h, HoAh oA 257 1
BChls#/2 tHChlide a# i l(El4). BChlsAY)&
BRI B Ja 0 B AR R R 4 K A B B Ch-
lides 5 A2 56 - A Tl 2 (B2 e k- A 1R 5 L At s 1k
B )R AL A i BChls, AFEBRBChIsZ [A]4 AH H.A% 1L
[T BE -

2.3.1 BChl a9 AR

M Chlide a5 BChl alf) 5 — 5 J& il i CORIE
JiChlide aff)C7T=C8XUEEE, A= %3~ £ )i Bk -2 B -2
H % Mga (3-vinyl-bacteriochlorophyllide a, 3V-BCh-
lide @) (NomataZ4$2006). COR 13NV J4H f: BehX.
BchY#M1BchZ. BchYMIBchZ &R S EH, 2
COR F¥J {4k 47 (NomataZ52006; TsukataniZ$2013a,
2015), BchX#l\ @& ot . 3V-BChlide a
S AEBChFHIMEH R, #EC3- 2@ Ab R Ak & EH,
FINC3'-J2JE(Porra®1996). K& KM J&, FAE
BehCIIE R, A8 C3 4 it 2% A8 il C3- LR A,
£ i BChlide a (Bollivar£$1994; Lange%5$2015) (&
4). BChl a=¥)& )i fa — 0 2 4 BChl aff 7
P4 B (BehG) ik, 7EBChlide affiC17-H 1R L
N IS 3 JE (Addlesee®52000; Garcia-Gil%$2003).
2.3.2 BChl ¢, BChld, BChl eF1BChl fEI4EYIE K

TEBChl ¢, d, eFf IR & B, & St
BciC £ [Chlide afJC13°- AL BIE, T H3- 20
Yl 4% K R IEd (3-vinyl-bacteriochlorophyllide
d, 3V-BChlide d) (Liuf1Bryant 2011; Teramura%s
2016a), J5 # fEBchFE{BchVIEH T, [C3 253 K&
A KA OB, fEC3T 5] N 3E, £ piBChlide d
(Harada%$2015; Teramura%52016b), BChlide d/& &
HBChlide c. e/ IHT1A .

RARTELEHIBChlide ¢, dfle A %2R 24,
7£3V-BChlide d#& §BChlide did f2rr, 7] LLZECSAN
C1247 B T A [ i, 3 L6 A 7] (10 ) i A2 DAS-
MR B AR % B2 (S-adenosylmethionine, SAM){E Ky H
SR IZA FIEAL = 2B 1) (Huster /1Smith 1990). 7E
A YT ORI T PR R (1 g 2K F R R R T
BchQAIBChR, ‘B 143 HIKE FH 3L fin 1] C8%- 2, gt Al
C12'-HHHk . 7EC8kbHx 2 Al LU 34N Fi 3,
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FECI2' AN B I B — AN 5L . (R, C8/U%E nT LA
O TNEE, R T RRECH L, CL2EE AT DL
F ol 2, (Glaeserd$2002; Frigaard£$2003; Frigaard
2£2006).

Wi L R Bch UM — /N H R 5 5 3|
BChlide df¥jC207% B Mz & |, 5t 7] LUK BCh-
lide d#%1k, yBChlide ¢ (Maresca®52004; Harada%
2005). BChlide cffIC77 1 H 345 H i JE-SAMi
BeiD%Ab, JE I BE2E, w42 Bl " BChlide e. BCh-
lide dth v] LAY BeiDA AL, K AEAR R RN, Bt
BChlide f (ThweattZ$2017). BchKj&BChls ¢ d.
e MG b ) B G — AN Fe e 16 g, Bk
W It = At i A6 B (farnesyl tail) B 46 £IBChlides
cv dv eMIfCITNIRMIEE b (Frigaard5$2002).
2.3.3 BChl bF1BChl gf4E 44 A%

BChls bFl1glC8MMI%E 2N £, 3% . COR (Bv-
CORE{HmCOR) [A] i} f# .8 V-Chlide a[fJC8- £ fikk
FICT=C8 XU T ;. C8-1I. . %% (CH,CH=), 4 i BCh-
lide g (TsukataniZ$2013a, b). 25{bLF M3V-BChlide
a® i BChlide a, BChlide gf1C3- 2.% 3 (—CH=CH,)
A LLiE 3 BehFAIBChCHEAL 73 71l 34T 7K & it A
A1, TERC3- 215 (~COCHS;), 7t A2 I BChlide b
(BollivarZ1994; SuzukiZ$1997). Hi#E3:FHIE B,
BehFABchCEihth i K A7 7E T A BChl bIr) 4 b4
rh DAL IV 2 1R TR Bt BT LK A2 fEBChlide
a b, SRJE TR RC3- L4, & RBChlide b (Tsuka-
tani%2013a). BChlide hFIBChlide giffi i 45 S 11k i
2% 2 A BB ChG Ay il VS N 2 AE e Ok, B 4 2F
EBChl bF1BChl g (Chew#1Bryant 2007).

B 7 AR R AE R RE R A, HELEBChlsih A H
flEE AR e, N A i R A R . A A A
I R R U S o i A i R AR, AR AR
M, BRSO, fa88 R %
Aot BASCEBLAANCHATIEIEA, G
U e A TR TR . IR, BB A RS S M
5 i (Frigaard452002; Glaeser2$2002; Tsukatani
22015),

3 INEERE
FtA ChlsF1BChls 14k 27 g5 7 35 35 5 AL, #R

B A I RIS S, Ui B AR B R 2 50k
VEF I 75 10 AN [ (1))t AR 47 88 aod e A8 i kB
I P BRSO B SR 5 P S R RSO B, AT
fSOK BH O RE B SR AN A = A ThBe 2 M . BR
Chls e, HAhMZREHS A MR V206 B sl A
8, R A R P % R IR WSO 15 2 J 1 2 i 47
NG KSR L R AR A R R ),
DV-PChlide a2 filf 5 4% 2% R A 10 B 82 2E W0 6 1k
R &, DV-PChlide a7= %% 8V-Chlide a5 B Chlide
a. Ko aE R MAEY & ok 3 TChlide a, A
BChl bFlg3k [ T-8V-Chlide a. Chls cff)& %z
i ANIE A, AR S H A5 M HEN AT #E SR H T-DV-PChlide
aB{PChlide a. I 483 SRR & ot
B, AT TS E HDBRe ORI R
12 FEVE, A v Rk B B R AR s e & A
Vbt SRR BRI IR AL RS, DY IO AR
Yitre R NG L eI G ae /.
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The structural differences and biosynthesis of chlorophyll family
members
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Abstract: Chlorophylls are essential for plants, playing a central role in the absorption, transmission and trans-
duction of light energy in photosynthesis. At present, more than ten members of chlorophyll family involved in
photosynthesis have been identified. This review succinctly summarizes the structural characteristics and the
differences of these chlorophylls, systematically introduces the biosynthesis pathways of all known photosyn-
thetic chlorophylls and related synthetic enzymes, and expounds the relationship among chlorophyll members.
The above contents would provide a reference for the plant photosynthesis research and the biological function
research of chlorophyll, and would also assist teaching on chlorophylls.
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