跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
osm&bio
搜索
搜索
外观
创建账号
登录
个人工具
创建账号
登录
查看“︁植物的矿质生理学”︁的源代码
页面
讨论
大陆简体
阅读
查看源代码
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
查看源代码
查看历史
常规
链入页面
相关更改
页面信息
外观
移至侧栏
隐藏
←
植物的矿质生理学
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
== 总论 == * 植物体内的元素可分为大量元素(Macronutrient)和微量元素(Micronutrient)。 * 大量元素包括:氧、碳、氢、氮、硫、磷、镁、钾、钙、铁。 * 微量元素多变,但总是包括:锰、硼、锌、铜、钼、氯。(钠、硒、硅、镍只有部分植物需要,有些资料认为所有高等植物都需要镍) * 将植物组织样品在105℃下加热至质量不变,产物称为样品的干物质(Dry Matter)。 * 将干物质在有氧气的密闭容器中加强热,得到的分解产物称为灰分(Ash)。 * 干物质分解时,碳、氢、氧、氮、硫<ref>硫元素主要存在于灰分当中,属于矿质元素,只有少部分以气体形式散失。</ref>以气体逃逸(CO<sub>2</sub>、H<sub>2</sub>O、NH<sub>3</sub>、SO<sub>2</sub>),而其它元素形成无机氧化物或盐,对灰分进行元素分析可知植物的营养情况。 == 植物对矿质的吸收 == [[File:636.png|thumb|535x535px|图1:杜南平衡]] * 植物的绝大多数元素需要从土壤以离子形式吸收,碳、氢、氧除外。 ** 铁兰(Tillandsia)可通过叶从空气吸收离子。 ** 水生植物的叶一般可从水中吸收离子,与根同时发挥作用。 * 土壤由固态、液态、气态部分组成。 ** 固态成分主要是硅酸盐、黏土、碳酸盐、有机物分解产生的腐殖质(Humus)。 ** 液态部分即地表水,气态部分成分和大气很不一样,充满微生物代谢产生的挥发性物质。 ** 最适合一般植物生长的土壤,应该一半的体积是固态,一半的体积是气态和液态。 * 植物所需的元素,98%都在硫酸盐、磷酸盐、碳酸盐、腐殖质中,几乎完全不溶,只能通过长期风化被释放出来。 * 剩下的2%形成以黏土或腐殖质颗粒为核心的不溶的胶体颗粒,这是植物能吸收的部分。(直接可溶的成分极少,忽略不计) * 腐殖质一般只结合阳离子;黏土既可结合阳离子也可结合阴离子,阳离子较多。 * 阳离子结合紧密程度从高到低:Al<sup>3+</sup>、Ca<sup>2+</sup>、Mg<sup>2+</sup>、NH<sub>4</sub><sup>+</sup>、K<sup>+</sup>、Na<sup>+</sup>。 * 阴离子结合紧密程度从高到低:PO<sub>4</sub><sup>3-</sup>、SO<sub>4</sub><sup>2-</sup>、NO<sub>3</sub><sup>-</sup>、Cl<sup>-</sup>。 * 根吸收矿质的关键步骤是交换吸附(Exchange Adsorption),即根毛释放氢离子或碳酸氢根,将需要的阳离子或阴离子从胶体中替换出来。 * 离子随水的流动自由扩散到植物的质外体,然后由细胞主动地有选择性地吸收入共质体。 * 严格地说,离子能自由扩散到的范围称为表观自由空间(Apparent Free Space),它由两部分组成: ** 水自由空间(Water Free Space):离子不受电荷吸引,分布由水流决定。 ** 杜南自由空间(Donnan Free Space):离子受不能自由运动的电荷吸引,分布由束缚电荷吸引。 * 产生杜南自由空间的两种方式: *# 存在一层膜不允许某种离子通过,从而此种离子被限制在膜的一侧。 *# 离子被嵌入某种细胞结构(如细胞壁)而不能自由运动。 * 达到平衡状态时,杜南自由空间的离子浓度总是大于周围空间;若受限制的离子是阴离子,则杜南自由空间的电势总是低于周围空间,反之亦然。 == 大量元素 == === 氮 === 物质合成的原料 * 一般以硝酸根的形式被吸收,小部分以铵根形式,最后都被还原。(参见[[含氮分子合成代谢]]) * 氮是蛋白质和核酸的必要元素。 * 植物中一半的氮都在叶中,一半中的70%都在叶绿体中。 * 好氮植物(Nitrophile),如荨麻和藜,会在细胞液中积累硝酸根,参与离子平衡和渗透压调节。 ==== 缺乏征及其解释 ==== * 缺氮引起'''叶绿素(叶绿素来源于甘氨酸)合成减少''',老叶变黄,新叶变浅绿。,, * 缺氮引起'''蛋白质合成减少'''、'''核酸合成减少''',则植物的细胞分裂和生长分化都受抑制,则植株矮小,分枝分蘖减少,叶片少而薄,花果少而易落 * 缺氮时,老叶中氮素可运向幼叶,因此缺乏征由老叶开始,向幼叶发展。 ==== 过量征''(待解释)'' ==== * 不知为何,建议暂时与缺乏征反着记。 * 叶片大而深绿,植株机械组织不发达,长而柔软,披散,徒长。 * 根冠较小。 === 磷 === 代谢的能量来源 * 一般以二氢磷酸根的形式被吸收,不需要还原。 * 磷是核酸的必要元素,也存在于很多代谢中间物、辅酶、磷脂。 * 肌醇六磷酸(Phytate)是最多的储存形式,它能螯合金属离子(钾、镁、钙、锰、铁)。 ==== 缺乏征及其解释 ==== 磷和氮吸收关系密切,缺氮施磷肥无效 * '''缺磷就缺ATP,这也会抑制蛋白质合成''',则植株矮小,根和茎纤细,分枝分蘖减少,叶片少而薄,花果少而易落。 * 缺磷就缺ATP,缺ATP就影响质子浓度梯度建立(质子泵耗ATP),从而抑制质子协同转运,也就是说糖的运转受阻,糖就在营养器官积累,而花青素前体是糖苷,就所以会'''促进营养器官中花青素的合成'''。最后导致叶片不正常暗绿或紫红。 * 缺磷时,老叶中磷可运向幼叶,因此缺乏征由老叶开始,向幼叶发展。 * 缺磷时,新叶叶尖干焦,而老叶呈不正常暗绿或紫红色。 ==== 过量征及其解释 ==== * 磷的化合物和硅的化合物可能形成'''不溶的磷酸硅''',而植物能吸收硅的形式只有Si(OH)4硅酸。因此过量磷会抑制硅的吸收,降低植物抗病性(可参考 [[硅与植物抗病性]])。 * 磷的化合物与钙离子结合,在叶片中沉积磷酸钙,形成小焦斑。 * 与上同理,通过形成沉淀,施用磷酸盐肥过度,可能出现缺钙,缺锌的症状。 === 硫 === * 一般以硫酸根的形式被吸收,需要被还原。 * 硫是蛋白质的重要元素,一些辅酶也含硫。 * 多余的硫以硫酸根的形式储存。 * 缺硫时,新叶先变黄,接着老叶变黄。 === 钾 === * 钾是唯一一种所有植物都需要的碱金属。 * 钾只以自由的钾离子形式出现在细胞中,参与酶的催化、mRNA与核糖体的结合。 * 钾在细胞内浓度很高,是重要的渗透调节物质。(参阅[[植物的水生理学]]) * 有些细菌中钾可用铷替代。 ==== 缺乏征及其解释 ==== * 钾与现有的'''蛋白质活性'''有关,因此,虽然缺钾也会导致糖的积累(主要是由于淀粉和蔗糖无法合成导致的单糖积累),却不会促进花青素的合成。 * 由于缺钾,纤维素合酶等与细胞壁合成相关的酶类活性不足,因而细胞壁的形成收到影响,茎杆的发育收到影响,'''茎杆就柔弱易倒伏'''。 * 缺钾时,细胞水势不足('''抗旱性降低'''),缺水,'''叶片失水''',蛋白质、叶绿素等物质被分解破坏,叶缘向内变黄然后坏死。由于叶中部生长较快,整个叶子形成杯状弯曲或发生皱缩。 * 钾也是可被重复利用的元素,所以缺素症状首先出现在较老的组织和器官中(如老叶)。 ==== 过量征及其解释 ==== * 不清楚 === 镁 === * 镁以镁离子的形式被吸收,细胞中镁大部分是镁离子,小部分是叶绿素和果胶质的组成部分。 * 镁浓度高时会抑制钾离子吸收;氢、钾、锰、钙、铵根离子抑制镁离子吸收。 * 镁离子是很多酶的激活剂,特别是核酸、蛋白质合成中。 * 酸雨引起的土地酸化会引起树木缺镁。 * 缺镁时,老叶从边缘向内变黄,不局限于叶脉间,叶的中间留下箭头形的一块绿色。 === 钙 === * 钙以钙离子的形式被吸收,细胞中大部分是自由离子,小部分参与果胶质。 * 单子叶植物需要的钙比双子叶植物少。 * 植物体内的钙主要在质外体和液泡;细胞质中的钙主要在内质网。 * 植物缺钙抑制花粉发芽和花粉管生长。 * 缺钙时,新叶形状扭曲,后坏死。 * 番茄缺钙引起脐腐(Blossom End Rot)。 === 铁 === * 铁是血红素的成分,在植物中存在于细胞色素c、过氧化氢酶、豆血红蛋白、铁氧还蛋白。 * 叶绿素的合成需要铁离子。 * 土壤中既有三价铁也有二价铁,一般植物只能吸收二价铁。(禾本科植物可吸收三价铁) * 缺铁的症状和缺钾类似,即在叶脉间从叶缘向内变黄,但是在新叶上发生。 == 微量元素 == === 锰 === * 锰离子是若干种酶的激活剂,超氧化物歧化酶含锰,光合作用中光系统II的放氧复合体也含锰。 * 缺锰引起嫩叶的叶脉间变黄,植物的茎、叶、果实都会变小,有较小的坏死斑点。 === 硼 === * 关于硼的研究少,主要是因为没有合适的放射性同位素可对它进行追踪。 * 目前已知硼是叶绿素合成所需的辅酶,且是细胞壁的组分。 * 缺硼的症状多样,枝梢的芽坏死呈扫帚状,甜菜的心腐(Heart Rot),酚类化合物过剩(磷酸戊糖途径过度旺盛),抑制开花,水代谢异常,叶肉细胞合成的糖无法进入韧皮部,花粉不萌发。 === 锌 === * 锌离子是很多种酶的激活剂,如乙醇脱氢酶、碳酸酐酶、超氧化物歧化酶,叶绿素合成也需要锌离子。 * 锌离子还是核糖体的成分、一些转录因子的成分。 * 缺锌抑制植物生长,主要表现在节间长度缩短、叶的分枝异常(末端的叶呈玫瑰红形)。 * 缺锌时新叶的叶脉间变黄,有时变为红褐色。 === 铜 === * 铜离子也是多种酶的激活剂,也是质体蓝素(Plastocyanin)的成分。 * 酸性土壤上的谷类植物缺铜引起耕作病(Reclamation Disease),产量降低。 * 缺铜抑制木质素合成,使植物的花粉不育。 === 钼 === * 钼是固氮酶、硝酸根还原酶、亚硫酸根氧化酶等酶的成分。 * 缺钼主要引起缺氮,症状也类似。 === 氯 === * 氯离子主要出现于叶绿体中,为放氧复合体所需。 * 缺氯引起幼叶萎蔫和叶脉间变黄,有时老叶变为红褐色。 == 其它元素 == === 镍 === * 镍是尿素酶的成分。 * 缺镍主要引起尿素在植物中积累,尿素过高引起部分组织坏死。 === 钴 === * 钴是钴胺素(维生素B<sub>12</sub>)的成分。 * 植物不需要钴胺素,但固氮菌需要,所以缺钴的后果和缺氮一致。 === 钠 === * C4植物和CAM植物需要钠离子。 === 硅 === * 植物不需要硅,但有些禾本科植物会在细胞中积累二氧化硅,用于保护自己。 === 硒 === * 除了绿藻外,植物中没有硒代半胱氨酸,目前没有发现硒在植物中有任何功能。 === 缺素首现 === *新:S Ca Fe B Cu Cl(铁桶盖碰琉璃) *老:N P K (好记) *待补充:Mg Mn Zn Mo Ni <references />
该页面嵌入的页面:
模板:学科分类
(
查看源代码
)
返回
植物的矿质生理学
。
搜索
搜索
查看“︁植物的矿质生理学”︁的源代码
添加话题