跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
osm&bio
搜索
搜索
外观
创建账号
登录
个人工具
创建账号
登录
查看“︁文件:细胞13.45.png”︁的源代码
文件
讨论
大陆简体
阅读
查看源代码
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
查看源代码
查看历史
常规
链入页面
相关更改
页面信息
外观
移至侧栏
隐藏
←
文件:细胞13.45.png
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
Exocytosis of synaptic vesicles. For orientation at a synapse, see Figure 11–38. (A) The trans-SNARE complex responsible for docking synaptic vesicles at the plasma membrane of nerve terminals consists of three proteins. The v-SNARE synaptobrevin and the t-SNARE syntaxin are both transmembrane proteins, and each contributes one α helix to the complex. By contrast to other SNAREs discussed earlier, the t-SNARE SNAP25 is a peripheral membrane protein that contributes two α helices to the four-helix bundle; the two helices are connected by a loop (dashed line) that lies parallel to the membrane and has fatty acyl chains (not shown) attached to anchor it there. The four α helices are shown as rods for simplicity. (B) At the synapse, the basic SNARE machinery is modulated by the Ca2+ sensor synaptotagmin and an additional protein called complexin. Synaptic vesicles first dock at the membrane (step 1), and the SNARE bundle partially assembles (step 2), resulting in a “primed vesicle” that is already drawn close to the membrane. The SNARE bundle assembles further, but the additional binding of complexin prevents fusion (step 3). Upon arrival of an action potential, Ca2+ enters the cell and binds to synaptotagmin, which releases the block and opens a fusion pore (step 4). Further rearrangements complete the fusion reaction (step 5) and release the fusion machinery, which now can be reused. This elaborate arrangement allows the fusion machinery to respond on the millisecond time scale essential for rapid and repetitive synaptic signaling. (A, adapted from R.B. Sutton et al., Nature 395:347–353, 1998; B, adapted from J. Tang et al., Cell 126:1175–1187, 2006. With permission from Elsevier.)
返回
文件:细胞13.45.png
。
搜索
搜索
查看“︁文件:细胞13.45.png”︁的源代码
添加话题